
P R O J E C T D O C U M E N TAT I O N

D E T E C T, V 3 . 1

J O N J UA R I S T I C A M P I L L O,
M A R C D E L C R O I X,
R I C A R D O H U E S O

Planetary Sciences Group,
UPV/EHU

supervised by

R I C A R D O H U E S O

13 de junio de 2018

Copyright © 2018 Jon Juaristi Campillo, Marc Delcroix, Ricardo Hueso

Note: DeTeCt3.1 has been developed from DeTeCt2.0 (originally writ-
ten by M. Delcroix and partially based on algorithms developed by L.
Calderon and R. Hueso at UPV/EHU). This version of the software was
developed by Jon Juaristi and Marc Delcroix as part of the Planetary
Space Weather Services (PSWS) on Europlanet-2020 RI. Europlanet 2020
RI has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 654208.
The software is released as open software and can be modified by third
parties.

Science is what we understand well enough to explain to a
computer. Art is everything else we do.

— donald e . knuth

índice general

Í N D I C E G E N E R A L

Índice general V

Índice de cuadros VII

Índice de figuras VIII

1 Introduction 1
1.1. Changelog . 1

2 Installation 3
2.1. Requirements . 3
2.2. Initial setup . 3
2.3. Start the project . 3
2.4. First run . 4

3 Internals 5
3.1. Major differences from previous versions 5
3.2. Interface: MFC . 5

3.2.1. Main window . 5
3.2.2. Preferences window 6
3.2.3. About window . 7
3.2.4. Notification window 7

3.3. The new impact detection algorithm 8
3.3.1. Definition . 8
3.3.2. Results . 10

3.4. New functionalities and how to edit them 11
3.4.1. GUI . 11
3.4.2. Algorithm . 12

3.5. Thorough explanation of the source code 14
3.5.1. Table of files and purpose 14
3.5.2. auxfunc.h: auxiliary functions 14
3.5.3. Common: helper functions 16
3.5.4. Datation: datation functions 16
3.5.5. datation2: extension of datation 17
3.5.6. DeTeCt-MFC: main files 18
3.5.7. DeTeCt-MFCDlg: window/dialog functionality . 18
3.5.8. DetectThread: native detection thread 18
3.5.9. Dirent: third party native windows directory

functions . 19
3.5.10. dtc: legacy detection algorithm functions [unused] 19
3.5.11. dtcas3: Autostakkert!3 detection functions . . . 19
3.5.12. dtcgui: Main detection functions 19
3.5.13. filefmt: legacy file management functions [unu-

sed] . 20
3.5.14. filefmt2: file management functions 20

v

índice general

3.5.15. fitsfmt: FITS management functions 22
3.5.16. img: Opencv Matrix operation functions (C API) 22
3.5.17. img2: OpenCV detection functions (C++ API) . 22
3.5.18. max: impact detection helper structures and foun-

ctions . 24
3.5.19. resource.h: MFC resource file 25
3.5.20. serfmt: SER file management 25
3.5.21. wrapper: File capture wrapper 28
3.5.22. wrapper2: extension of wrapper 28

vi

índice de cuadros

Í N D I C E D E C UA D R O S

3.1. Pairs of source/header files and their purpose 14
3.2. Filter structure definition 14
3.3. Options structure definition 16
3.4. LogInfo structure definition 17
3.5. ImpactDetectParams structure definition 19
3.6. FileCapture structure definition 21
3.7. Image structure definition 22
3.8. DtcImageVals structure definition 22
3.9. Point structure definition 24
3.10. List structure definition . 24
3.11. Item structure definition . 24
3.12. dtcImpact structure definition 25
3.13. SerHeader structure definition 26
3.14. SerCapture structure definition 27
3.15. DtcCapture structure definition 28

vii

índice de figuras

Í N D I C E D E F I G U R A S

viii

1I N T R O D U C T I O N

This is the documentation for the current 3.1 version of the DeTeCt
software. This is the next big version in the 3.0 branch, started in late
2016 – early 2017 but discontinued due to participants not being able
to further develop that branch.

This version tackles the problems and issues from the previous
version, unstable and experimental, which didn’t yield the results the
stable 2.0 branch, did.

This document will serve as both the documentation and a guide
for future developers and users to improve the software by the classic
method of trial and error.

1 .1 . changelog

2018-01-12: Document creation, brief introduction.
2018-02-06: Initial file, similar to v3.0 documentation
2018-02-19: More information now that the software is to be relea-

sed
2018-02-21: Simple explanation of most files done; needs correc-

tions by Marc Delcroix to be thorough.
2018-06-13: First LATEX version. Some corrections.

1

2I N S TA L L AT I O N

2 .1 . requirements

1. Windows XP or later

2. OpenCV (2.4.13 is used and distributed with the software)

3. Visual Studio versions compatible with vc12/2013 (required for
OpenCV 2.x). If OpenCV 3.x is used, later versions of Visual
Studio are recommended (2015 and 2017 at the time of the writing
of this document).

a) Community Edition: 30 day trial with a full unlock by using
a Microsoft Account

b) Atomineer Pro (optional): addon which has been used to
create the documentation. Other alternatives include Doxy-
gen.

2 .2 . initial setup

1. Download OpenCV from the official site (http://opencv.org).
The downloadable file is an executable which can be extracted.
When extracted, a folder called “opencv” is created in the same
directory.

2. The folder created in the previous step should be moved to C:
(So the full path would be C:\opencv2) as this is the current
configuration. This can be configured later depending on the
developer’s needs.

3. In cases where ffmpeg is not available (necessary to read some
of the videos) it should be installed in C, too. Bear in mind
that both x86 and x64 versions should be downloaded to ensure
compilation for both architectures. The Dev version located here
(https://ffmpeg.zeranoe.com/builds/), and moved to C:

4. Install Visual Studio Community edition, which is the tool used
for development. The existing codebase was developed with the
2013 version (supported by OpenCV 2) so a version compatible
with that one is recommended. Luckily, as 2013 is not available
for free, the 2015 and 2017 Community Editions have backwards
compatibility. Furthermore, to ensure all tools for GUI develop-
ment are available out of the box two items need to be checked
in the installation:

a) Visual C++

b) Microsoft Foundation Classes (MFC) for C++

3

installation

2 .3 . start the project

The easiest way to launch the project is opening the .sln solution
file. An instance of Visual Studio will be launched. There, click the
build button. In case it doesn’t work open Tools >Options. There, go
to Debugging >Symbols and in the Symbol file (.pdb) locations, check
“Microsoft Symbol Server”. After you have closed the software, in the
second run the central panel should show a section called “Recent
Project” where DeTeCt-MFC should be the only item on the list. Click
it to open the project again.

2 .4 . first run

You’ll see that in the main control bars, there are different controls
and two specifically where the words “Release” and “x86” are present.
These controls refer to the configuration of the program compilation,
the former being the mode (debug being for development and relea-
se being for production), the latter being the version (x86 for 32-bit
architecture and x64 for 64-bit architecture).

Click in the play button where “Build” appears and if everything
goes right the compilation should be done correctly and the main
windows should appear. Check the next chapter for more details.

4

3I N T E R N A L S

3 .1 . major differences from previous versions

Detect v3.1 is the improvement of the previous faulty v3.0 version
which is in turn the evolution of the v2.0 branch; main changes being:

1. . Written mostly in C++, instead of being fully implemented in
C as previous versions were.

2. Uses (for the most part) the C++ OpenCV API rather than the C
API.

3. Graphical application instead of a console application, with an
easier (almost non-existent) learning curve.

Some old code has been reused due to time constraints and respec-
ting the KISS and DRY principles in order to not rewrite the whole
application in C++ for the same reason. C++ compilers such as the one
used in this project are able to interoperate with C code with external
linkage.

3 .2 . interface : mfc

The GUI framework used in DeTeCt is MFC, short for Microsoft
Foundation Classes. MFC allows to create native Windows applications.
Although a bit outdated, it supports major Windows versions starting
from XP.

Currently, the GUI consists of four windows:

3.2.1. Main window

The main window, which in itself consists of a simple interface that
for the time being isn’t scalable. It can be divided into three parts.

Part 1: Top (menu bar)

Three menus can be seen here:

1. The “File” item opens another menu which allows three controls:

a) Open file: opens a window which allows the user to select
a single file out of the allowed ones.

b) Open folder: opens a window which allows the user to select
a folder which will be recursively traversed for allowed files.
Depending on the depth of the directory tree the file list
can be bigger than expected.

5

internals

c) Exit: exits the program

2. The “Preferences” item opens another menu which allows a
control:

a) Advanced settings: opens a settings window, which will be
detailed in later sections.

3. The “help” item opens a menu which allows a control:

a) About: opens the about window, with information about
the software and authors.

Part 2: Middle (log)

The big white rectangle covering most of the window is the part
where the events will be logged. It’s scrollable so the user can read the
events even when the algorithm is running (since it’s threaded).

Part 3: Down (progress bar and button)

As can be seen, the progress bar is just below the log. This bar will
update for each frame analysed, the step being calculated by MFC
itself by setting the interval between 1 and the number of frames of
the video to be analysed.

The button below just launches the algorithm (which will be detai-
led in another section) for each item in the list of files).

3.2.2. Preferences window

This window shows the settings the current algorithm uses, with
the default values. Most of the parameters are carried from the older
version. Some of them have been discarded (but maintained for legacy
reasons) and others have been added. They are divided as such:

Impact parameters

Parameters regarding the actual impact: the mean value factor,
minimum time in seconds (which will be translated into frames taking
the fps into account), the radius in pixels and the brightness threshold.

There are other parameters regarding the mask, etcetera.

ROI parameters

Parameters regarding the region of interest which will ideally
contain Jupiter. The size and security factor (so it isn’t big/small)
and the median buffer size to compute it. The main difference with
previous versions is that the ROI is only computed in the first frame
and then detected by correlation in subsequent frames.

6

3 .2 interface : mfc

Visualisation parameters

Parameters regarding the visualisation of the algorithm in different
forms:

1. ROI shows a cropped image of the frame limited by the ROI
coordinates

2. Tracking shows the original frame with the ROI and Centre of
Mass (or Centre of Brightness)

3. Difference shows the difference frame

4. Reference shows the reference frame

5. Mask shows the mask used to compute the difference frame

6. Threshold shows the thresholded difference frame

7. Smooth shows an smoothed difference frame

8. Histogram shows the histogram of the image

9. Result shows the result of the algorithm (same as difference
image)

Other parameters

Parameters that can’t be categorised, so to speak. The most im-
portant ones are the number of frames for the reference, which will
become a running average one we construct it; the minimum number
of frames for the video; the debayering code for videos which use a
median filter and the filter to smooth the difference image.

3.2.3. About window

This window is straightforward and doesn’t have any input con-
trols. General information about the software is given: version, authors
and a small disclaimer of Europlanet funds as per the requirement of
the project.

There are also two links: one to the original project page run by
Mark Delcroix and the other one the UPV/EHU software page run by
Ricardo Hueso.

3.2.4. Notification window

This window is also straightforward and will appear once the
algorithm has run. It’s shown as a modal so the user has to close it by
hand.

7

internals

3 .3 . the new impact detection algorithm

3.3.1. Definition

The algorithm is a variation of the original with a few modifications
and additions by the UPV/EHU team (Jon Juaristi and Ricardo Hueso).
The list below explains how an execution goes for a video:

1. Read video file. SER videos are automatically converted into the
original colours, ultimately BGR or RGB.

2. For the video, get the framerate in frames/s and the number of
frames. Some videos in wmv format might produce negative or
wrong framerates.

3. If n <= min f rames ignore the file

4. Else:

a) Read frame

b) Convert frame to grayscale, taking into account the colour
of the original video (RGB, RBG, Bayer filters). For SER files
the Bayer conversion is done automatically, manually (an
option in the interface) for the rest.

c) If n f rame = 1

1) Get the CM (centre of mass, but actually the centre of
brightness of the image) and the ROI.

2) Smooth the frame with a filter stipulated by the user
3) Convert the frame to the reference frame
4) Add frame to reference frame queue (size is an option

inputted by the user, 50 by default).

d) If n f rame > 1

1) We apply a cross correlation algorithm (as the frames
could be unaligned) with the original ROI and a provi-
sional ROI slightly bigger than the original; thus obtai-
ning a new ROI with the original dimensions.

2) Normalise the frame with

Greyn = Greyn ·
Grey1

Greyn

3) Create the difference frame by applying differential
photometry:

Di fn = Greyn − Re fn−1

4) Apply thresholding to possible negative values.
5) Smooth with a filter selected by the user (standard,

median, Gaussian or none).

8

3 .3 the new impact detection algorithm

6) Save the maximum brightness point in with the frame
number (minus the faulty frames), x and y coordinates
and the value.

7) Add this to a list of maximum brightness-es of differen-
tial photometry frames of the video.

8) Check the size of the reference frame queue in regards
to the number of frames needed for the reference frame
a′ If its lower, update the new reference frame:

Re fn =
n− 1

n
· Re fn−1 +

1
n
· Greyn

b′ If it isn’t, pop the first item and update the new
reference frame, being the popped item:

Re fn = Re fn−1 +
Greyn

N
− Q0

n

9) Add grayscale frame to the reference frame queue.

e) Show the desired output frames: difference, ROI, tracking,
etc.

f) Once the file has been fully examined we create the detec-
tion images:

1) Mean frame: each pixel is the mean brightness value of
the coregistered frames.

2) Max-mean frame (original and brightness-scaled): each
pixel is the difference between the maximum brightness
and mean brightness for each position in the coregiste-
red sequence of frames.

3) If the detail option has been selected other result frames
will be created.

5. 5. After the video has been analysed, the impact algorithm is
run:

a) Check that Bmax > B ·meanValueFactor

b) Create an empty queue whose size will between 5 and

c) For each item on the list;

1) When the queue is full (equal to or bigger than the size)
a′ Get the mean brightness value
b′ If QB < B · (1 + meanValueFactor), remove the first

item and add item to queue and skip to the next
step of the loop

c′ Else, get the brightest element (first item when sor-
ting by brightness), which will be assumed as the
point of impact.

d′ Check the number of frames in a radius close to the
brightest item:

r = (x− x0)
2 + (y− y0)

2

9

internals

e′ If more than 70 % of the frames are in the radius of
the impact, it is considered as an impact candidate.

f ′ Reorder the list in the original form (ascending
order of frame number).

g′ If the mean is bigger than the previous mean (mea-
ning it’s the brightest impact), and impact detection
object is created, with the first, last and maximum
brightness frames; another item being added to de-
tect if it could be a longer impact.

h′ If the mean is lower, the first item is removed and
an item is added to the back of the queue, skipping
to the next loop.

2) When the queue isn’t full, the item is pushed to the
back of the queue

d) If we have an impact, we check if the length is really the
stipulated one, just in case; then show its duration (in the
debug console, for the time being).

6. The interface will show if an impact has been detected or not: in a
positive case, the information (start, finish, maximum brightness
frames) will be shown, whereas in a negative case the user will
be promptly notified about the lack of impact.

7. Either way, the detection image will be shown for some seconds
(four for the time being).

8. If the image being processed was the last one of the bunch, a
window will be shown where the user is notified of the location
of the log which should be sent to Marc Delcroix.

3.3.2. Results

The results depend on the used parameters. As of now, the default
parameters are used, with a mean value factor of 0,4.

A small functionality which creates .csv files has been added. This
file contains one line per frame with its number, and the information
about the maximum of brightness (x and y coordinates, the value of
brightness). The files are used to test the algorithm and check if the
parameters are the correct ones.

Comparing it to the log files, there are a couple f videos where the
impact is really evident.

Those are the videos where there isn’t much noise / clouds and
the impact is clear; whereas there are others where the impacts are not
detected:

Impact is discernible and detected: Wesley, Go, Aoki, Ichimaru,
McKeon, Kernbauer, Thomas, Pedranghelu

Impact is neither discernible nor detected: Fleckstein

10

3 .4 new functionalities and how to edit them

Impact detection is a bit faulty: Masayuki

We’ve added a small part to the log which shows the certainty of
the impact.

First we get a brightness factor BF operating with the maximum
brightness values (B) of the differential images used for the impact
detection

BF =
Bmax

B
− 1

Then we obtain the certainty with this formula:

Certainty =
BF

MIS
· log10

(
Nreal

Nminimum
· 10

)
Where MIS is the minimum impact strength explained before,

B is the mean of brightness and N is the number of frames of the
impact, real being the actual impact and minimum being the parameter
established in the option window.

The number will depend in two factors: the brightness factor and
the length of the impact itself.

3 .4 . new functionalities and how to edit them

3.4.1. GUI

The main file (called a resource file in MFC context) is named
DeTeCt-MFC.rc. An area called “Resource view” will be seen in the
right side of the window when the project is opened.

A list of items will be shown with a non-trivial name; which is in
turn the ID of the control.

Double clicking in one of the items will open an interface editing
view. These are the most important ones:

1. Dialog

a) IDD_ABOUTBOX: ID for the about dialog/window

b) IDD_DETECTMFCDIALOG: ID for the about dialog/window

c) IDD_PREFERENCES: ID for the settings dialog/window

d) IDD_SENDLOGDIALOG: ID for the result dialog/window

2. Menu

a) IDR_MENU1: ID for the main menu bat

All dialogs have their own classes which have been defined in
DeTeCt-MFC.h and DeTeCt-MFC.cpp header and source file respectively.

The correspondence between the Ids and the classes is the next
one:

1. IDD_ABOUTBOX: CAboutDlg

11

internals

2. IDD_DETECTMFC_DIALOG: CDeTeCtMFCDlg

3. IDD_PREFERENCES: PrefDlg

4. IDD_SENDLOGDIALOG: SendEmailDlg

To add items to the code, after right-clicking the “Add member”
variable item of the menu has to be used. It will be added to the
respective class, being declared in the header file. Double clicking will
create events for the item in question.

In both cases a dialog will be opened, which is easy to navigate, in
order to add the item and/or the event.

Checking the MFC documentation is suggested.

3.4.2. Algorithm

Most of the functionality has been converted into the C++ API.
Thus, the functions are nearly the same with a few additions. Instead of
the IplImage object, Mat objects are being used. This has the drawback
since no OpenCV 2 structure has a ROI field, so a struct Image has
been developed which in turn is made of the frame and a ROI.

The filefmt2.h/cpp files contain nearly the same code as filefmt.h/c.
The main differences are in the functions that end in 2, which are the
OpenCV 2.x versions of the old functions.

Changes

SER file management (serfmt):

1. Serfmt2.cpp/h were created but are currently unused

2. When creating the structure, depending on the header values
enough memory is allocated to create the Mat from the file data.

3. A function named serFrameRead was created which reads the
file data into the allocated memory. Depending on the size and
channels it’s read differently, taking into account how it’s or-
ganised in the first place. For more information check the spec
page:

http://www.grischa-hahn.homepage.t-online.de/astro/ser/SER

4. The data read by the aforementioned function can be retrieved in
pointer format (void*) by another function named serQueryFrameData.

Wrapper files (wrapper)

1. A dtcCapture2 item has been created, where the videocapture
has been migrated from the deprecated CvCapture class to the
current cv::VideoCapture class. At the time being, it is unused.

2. The function dtcCaptureFromFile2 has been created as a new
implementation using the new API.

12

3 .4 new functionalities and how to edit them

3. dtcQueryFrame2 has been adapted to the new SER v3 specifica-
tion. Raw data from the file is read normally, but depending on
the header values the OpenCV Mat containing the video frame
is created differently. Depending on the byte depth the Mat con-
tains is one or three channels of 16-bit or 8-bit data. If the video
has been captured using Bayer filters, a colour conversion will
be applied.

Image manipulation files (img2):

1. Some of the functions which operate with the ROI, as stated
above, instead of single IplImage instance we have to use an
Image structure which consists in a Mat and Rect instances;
differences being trivial.

2. There’s a cross-correlation function, correlateROI, in which the
current frame and the original frame, both being cut with their
respective ROI (a bigger cut in the former case), by using OpenCV
functions, allows us to get the cross-correlation matrix and the
resulting aligned frame. It also returns an accurate value of the
displacement of the Centre of Brightness

3. The histogram function is also very different due to the API
changes being heavy in this regard.

4. There are a couple of functions which draw the location of the
Centre of Mass and the location of the impact as a crosshair, as
well as a rectangle delimiting the Region of Interest.

13

internals

3 .5 . thorough explanation of the source code

3.5.1. Table of files and purpose

Filename Purpose
auxfunc.h Auxiliar functions
cmdline Command line functions
common Common functions
datation Datation functions (legacy)
datation2 Datation functions (additions)
DeTeCt-MFC Main program file
DeTeCt-MFCDlg Dialog/window classes & functions
DetectThread Impact detection Windows native thread
dtc Impact detection algorithm for CLI (legacy)
dtcas3 Impact detection algorithm for AS!3
dtcgui Impact detection algorithm for GUI
filefmt File management functions
fitsfmt Fits file management functions
img OpenCV IplImage treatment functions (legacy)
img2 OpenCV Mat treatment functions (adaptations)
max Functions for impact detection by max. brightness
resource Visual Studio autogenerated file
serfmt SER file management functions
stdafx Visual Studio autogenerated file wrapper.

Cuadro 3.1: Pairs of source/header files and their purpose

3.5.2. auxfunc.h: auxiliary functions

This file only contains only a function:

DBOUT(S): returns the introduced string stream as an output
string stream (std::wostringstream). Used mainly for debug-
ging, the name stands for DeBug OUT.

For filter, these are the parameters:

Field Type Purpose

type integer
Type of filter: blur, median, Gaussian. fun-
ctions

param integer[4]
Parameters: radius, height, width and sig-
ma

Cuadro 3.2: Filter structure definition

And for options:

14

3 .5 thorough explanation of the source code

Field Type Purpose
filename

char*

Input filename
ofilename Output filename
darkfilename Dark frame filename
ovfname Output video filename
sfname <unknown>filename
dirname directory name
nSaveframe

integer

<unknown>filename
ostype Source video type
ovtype Output video type
timeImpact

double
Time of impact in seconds

incrLumImpact Minimum impact strength
incrFrameImpact integer Number of frames for impact
radius double Radius of impact in pixels

nFramesROI

unsigned long

Number of frames for ROI (depreca-
ted)

nFramesRef
Number of frames for reference fra-
me

wROI ROI width (deprecated)
hROI ROI height (deprecated)
bayer integer Debayering code

medSize

double

Median filter buffer size for ROI cal-
culation

facSize Size factor for ROI
secSize Security factor for ROI
threshold Time of impact in seconds
learningRate Learning rate (deprecated)
histScale Histogram scale
wait

boolean

Time to wait in milliseconds
thrWithMask Use mask for reference frame
viewROI View ROI frame
viewTrk View tracking frame
viewDif View original differential frame
viewRef View reference frame
viewMsk View masked differential frame
viewThr View thresholded differential frame

viewSmo
View smoothed differential frame
frame

viewRes View resulting differential frame
verbose Verbose output (deprecated)
debug Debug output (deprecated)
videotest Test input video file (deprecated)

ADUdtconly
Use Adudtc algorithm only (max,
max-mean images)

detail Show more frames in output
allframes Save all intermediate frames
minframes Minimum frames to process video
filter Filter Filter defined in the table above
Continues in next page

15

internals

Continues from previous page
Field Type Purpose

dateonly integer
Display date information and stop
processing

ignore integer Ignore incorrect frames

Cuadro 3.3: Options structure definition

3.5.3. Common: helper functions

These files define multiple common or helping functions:

Mid: copy a substring.

Left: copy a left substring???

Right: copy a substring to the right???

Replace_str: replace string

inStr: Check if substring is inside string

strrstr: check location of string in substring

InRstr:???

Lcase: convert string to lowercase

Ucase: convert string to uppercase

3.5.4. Datation: datation functions

These files define functions regarding image datation, i.e., obtaining
when the video was recorded. Operates with Julian dates, UTC dates,
etc. For this, we use the following functions:

dtcGetDatation: Gets datation from file capture

dtcGetCorrectDatation: Fixes the datation if computed inco-
rrectly

dtcWriteLog: writes DeTeCt.log, the contents of the file are ex-
plained in a later appendix.

dtcGetDatationFromFileInfo: Gets datation from file system
information

dtcGetDatationFromLogFile: Gets datation from different soft-
ware log files

gregorian_calendar_to_jd: Converts dates to Julian day

16

3 .5 thorough explanation of the source code

jd_to_date: Converts Julian days into dates

fprint_jd: Prints Julian day

fprint_jd_wj: Prints Julian day and calendar date

fprint_timetype: Prints type of date, local, universal or unk-
nown

JD_from_time_t: Obtains Julian day from C++ time_t instance

month_nb: Get month from String

3.5.5. datation2: extension of datation

This is an extension of the datation functions. Since in this version
we support analysing multiple files at once, writing an unique log
containing a line for each video analysed.

We define an struct here, named LogInfo:

Field Type Purpose
filename char* Name of analysed file

start_time

double

Start time of the video (calendar
date)

end_date
End time of the video (calendar da-
te)

duration Duration of video in seconds
fps Frames per second
timetype TIME_TYPE Type of time: UT, LT or unknown

comment char*
Comment: software info &
functions

nb_impact integer Number of impacts found
certainty double Impact confidence

Cuadro 3.4: LogInfo structure definition

With this, we can now write a log file with the next functions:

createLogInfo: creates an instance of LogInfo

fprint_jd_wj: prints the julian date converted into a calendar
date into the file stream i.e., the log file.

dtcWriteWholeLog: legacy function, unused

dtcWriteWholeLog2: writes the information into the log file. It
traverses a list of LogInfo items and prints them line by line. The
contents will be explained in an appendix.

getDateTime: helper function to print the date and time of the
messages both in the output.log file and GUI

17

internals

3.5.6. DeTeCt-MFC: main files

The main file of the software, this is the starting point from where
runs and operates as the user wants. The application is defined there,
which is the instance of a class named CDeTeCtMFCApp.

Due to an option to develop some functionalities compatible with
AutoStakkert!3 there are two different forms of starting the program

1. The usual way: double clicking the icon and running the software
in GUI mode normally.

2. AS!3 compatibility mode: opening a console and typing Should
open a new terminal where the same algorithm is run (with simi-
lar output) but the image coregistration data is already known.
This feature is not completed yet.

DeTeCt3.1.win32.exe �autostakkert filename

There aren’t any functions except the InitInstance which works in
the aforementioned ways. In the first case, components from the next
file will be the ones spawned.

3.5.7. DeTeCt-MFCDlg: window/dialog functionality

As said before, this file pair is the one which has the whole window
or dialog (Dlg stands for it) functionality, the equivalence is:

1. Main dialog: CDeTeCtMFCDlg (ID: IDD_DETECTMFC_DIALOG)

2. Preferences Dialog: CDeTeCtMFCDlg (ID: IDD_ABOUTBOX)

3. About dialog: PrefDlg (ID: IDD_PREFERENCES)

4. Results / log send dialog: : SendEmailDlg (ID: IDD_SENDLOGDIALOG)

3.5.8. DetectThread: native detection thread

This class is a bit redundant since the standard C++ libraries al-
ready allow for threading but was created in a time where the execu-
tion was synchronous and the interface couldn’t be updated because
of blocking calls.

Until recently an standard thread function was called but as Win-
dows has its API in this regard those functions have been favoured.

The documentation requires the user to spawn a thread with
AfxBeginThread, which in in our case is defined as

AfxBeginThread(impactDetection, (LPVOID) params);

The function requires an special a special signature, which in our
case ends up being the next one:

18

3 .5 thorough explanation of the source code

UINT __cdecl impactDetection(LPVOID pParam);

LPVOID is an alias for a pointer to void (void*). Since it’s a pointer,
we need to created a pointer to an structure, which is aptly named
ImpactDetectParams, which is defined as

Field Type Purpose
file_list vector<string> List of files to be analysed
opts Options Options for the algorithm

scan_folder_path string
Topmost folder where the out-
put is going to be stored

Cuadro 3.5: ImpactDetectParams structure definition

Initially a ImpactDetectParams instance is created and casted to
spawn the thread. In the thread function, the LPVOID will be reversed
to obtain the original memory structure.

With this the thread will be spawned when the “Detect impact”
button is clicked and the functions in dtcgui.h/cpp will be called.

3.5.9. Dirent: third party native windows directory functions

These functions are windows directory functions made by Toni
Ronkko and available at

https://github.com/tronkko/dirent/blob/master/include/dirent.h

3.5.10. dtc: legacy detection algorithm functions [unused]

This file is used as the main function of the older, console based,
version of DeTeCt, where the detection algorithm, the part where
operations with IplImage type objects are made. The detection itself is
run with functions present in max.

3.5.11. dtcas3: Autostakkert!3 detection functions

As stated before, AS!3 support is in a halt so these functions are
not totally implemented yet. The function should be the same that it’s
called in DetectThread, but with some differences (namely the ROI
identification which should be already included in the AS!3 file).

3.5.12. dtcgui: Main detection functions

This is, alongside the img2.h/.cpp files, the core of the software, so
to speak. It’s the adaptation of the dtc files from the previous version.
The main functions of the file are:

19

internals

read_files: with a folder, it obtains a vector of files in a directory
tree reading it recursively. The supported formats are: m4v, avi,
ser, wmv, bmp, jpg, jpeg, jp2, dib, png, p?m, sr, ras, tif, tiff, fit
and fits. These files will be the ones which the algorithm will
analyse.

Itemcmp: compares maximum brightness items by their bright-
ness value

Framecmp: compares maximum brightness items by their frame
number

Detect: impact detection algorithm explained above.

It also includes a pair of helper functions which show which system
is the user is running, for internal purposes, these are:

StreamDeTeCtOSversions: shows software (both Windows and
DeTeCt) version which the user is running as a text stream.

GetOSversion: Gets Windows operative system version

3.5.13. filefmt: legacy file management functions [unused]

This file is the one which will operate with the files. This is the
old version used by the 2.0 branch of the software with is present for
legacy reasons and should be removed.

3.5.14. filefmt2: file management functions

This is the new version of the previous file, the main difference
being that it the OpenCV C++ API is used instead of the C one.

In order to operate with the files, an struct named FileCapture has
been created, with the next fields:

Field Type Purpose
FileType int Type of file
fh FILE* Associated file pointer
frame int Number of frame

Image Mat
OpenCV matrix containing image
pixel values

Image
size_t

Bytes per frame
BytesPerPixel Bytes per pixel (1 or 2)
ImageWidth

int

Width of the image
ImageHeight Height of he image (1 or 2)

BytesPerPixel

Pixel Depth in bits of the
image (which will affect the
BytesPerPixel value

Continues in next page

20

3 .5 thorough explanation of the source code

Continues from previous page
Field Type Purpose

ColorID unsigned int
Colour ID of the image (BRG, RGB,
Bayer...)

header_size

size_t

Size of the header data
FrameCount Number of frames
ValidFrameCount Number of frames
StartTime_JD

size_t

Start time in Julian day format
StartTimeUTC_JD Start UTC time in Julian day format
EndTime_JD End time in Julian day format
EndtTimeUTC_JD End UTC time in Julian day format
NumberPos

int

???
LeadingZeros ???
FirstFileIdx ???
LastValidFileIdx ???
LastFileIdx ???
Filename_rac

char*

???
Filename_head ???
Filename_trail ???
Filename_ext ???
Filename_folder ???

Cuadro 3.6: FileCapture structure definition

This structure will be operated by the next functions:

FileCaptureFromFile: Opens the file and obtains the information,
operating differently if the file is a .fits or a different format
not supported by OpenCV.

fileReinitCaptureRead: Restarts the file capture

fileQueryFrame: queries a frame, i.e., reads the data into an
IplImage.

fileQueryFrame2: same as before but a Mat instead of IplImage.

fileGet_info: gets information of the file.

fileReleaseCapture: Cleans capture.

fileGenerate_filename: Generates the filename

fileGet_filename: Obtains the filename

fileGenerate_number: Generates the file number based on the
leading zeros of the original filename [??]

21

internals

3.5.15. fitsfmt: FITS management functions

This file uses the fits API by the Smithsonian institute, where this
file extension gets its support with the next three functions:

fitsImageRead: reads the bytes of the image.

fitsGet_info: gets file info by reading the header data. For this,
it uses the API mentioned before.

fitsJD_date: obtains the Julian Date taking the header data into
account.

3.5.16. img: Opencv Matrix operation functions (C API)

This file is the file where the deprecated IplImage objects are going
to be operated. This file is deprecated and most functions have been
adapted into the Mat class of the C++ which are defined in img2.

3.5.17. img2: OpenCV detection functions (C++ API)

As said before, this file will be the one which will operate the same
way (with some addition) using the C++ API instead of the C one.
For some instances where will need the ROI, an Image struct has been
defined:

Field Type Purpose
Frame Mat Image frame
roi Rect Region of interest of said frame

Cuadro 3.7: Image structure definition

Another struct, unused at the moment, called DtcImageVals is
available to find the luminosity values of the frame:

Field Type Purpose
lum

double

Total luminosity value
minlum Minimum luminosity value
maxlum Maximum luminosity value

Cuadro 3.8: DtcImageVals structure definition

The number of function in this case is pretty high, but most of
them are pretty straightforward:

dtcGetROI: returns the ROI of the frame

dtcGetCM: obtains the centre of mass (centre of brigthness) of the
image.

22

3 .5 thorough explanation of the source code

dtcGetGrayCM: obtains the CM for a grayscale image.

dtcGetGrayMatCM: same as dtcGetCM.

dtcGetImageROIcCM: Obtains the ROI by passing the CM.

dtcGetGrayImageROIcCM: Obtains the ROI by passing the CM to
a grayscale image

dtcGetGrayMat: there are two versions of this function.

• Obtains the grey mat but doesn’t colour correct the videos
which have been captured using Bayer filters [UNUSED]

• Obtains the grey mat and colour corrects the videos which
have been captured using Bayer filters.

dtcReduceMatToROI: Reduces original frame to a rectangle deli-
mited by the ROI.

dtcGetFileROIcCM: Similar to getImageROIcCM, unused.

dtcGetFrameROIcCM: Similar to getImageROIcCM, unused.

dtcMaxRect: Obtains the bigger rectangle out of two

dtcDrawCM: Draws the centre of mass and the ROI for the tracking
frame, i.e., the original video frame.

dtcDrawImpact: Draws the impact in the resulting detection ima-
ge.

applyMaskToFrame: Applies a mask to the grayscale frame redu-
cing the background noise so the CM and ROI calculations are
accurate.

correlateROI: there are two versions of this function

• Correlates the original ROI with the full frame [UNUSED]

• Correlates the original ROI with a slightly bigger cut of the
current ROI, increasing overall speed.

dtcRunningAvg: computes a running average of two Images. Unu-
sed since the OpenCV accumulateWeighted function is favoured.

dtcWriteVideo: writes a video with the desired output frames.
Not used as of now.

dtcLumThreshold_ToZero2: Applies a thrshold to zero in the
frame and saves it in the destination [UNUSED]

dtcGetImageLum: Get image luminosity [UNUSED]

dtcGetGrayImageVals: : Get grayscale image luminosity values
[UNUSED]

dtcGetImageVals: : Get image luminosity values [UNUSED]

23

internals

dtcGetHistogramImage: Show the histogram of the frame in
question.

dtcShowPhotometry: Show the photometry data for a given fra-
me.

correctBayerFilterImages: Corrects original images which use
bayer filters. Currently unused in favour of

dtcWriteFrame: Writes a frame into a video writer.

doublecmp: Compares two double values, returns true if a >b,
false if b <a.

printtbuf: Prints frame content into console.

isEqual: checks if two frames are equal. This was used to check

3.5.18. max: impact detection helper structures and founctions

In this file the (old) impact detection algorithm is declared and
some structs are defined for that, which are the next ones:

Point, which defines the maximum point of brightness for the
differential frame taking into account four parameters:

Field Type Purpose
frame long Number of frame
val double Maximum brighness value for given frame
minlum

int
x axis coordinate of val

maxlum y axis coordinate of val

Cuadro 3.9: Point structure definition

A List

Field Type Purpose
size

int
Current list size

maxsize Maximum possible list size
head

item*
First item

tail Last item

Cuadro 3.10: List structure definition

Of doubly-linked Items:

Field Type Purpose
point Point* The point itself
next

Item*
Next item

prev Previous item

Cuadro 3.11: Item structure definition

24

3 .5 thorough explanation of the source code

From which will we obtain a dtcImpact structure, where we will
get the next data about the detected impact(s)

Field Type Purpose
MaxFrame

long

Frame with maximum brighness value
nMinFrame Frame where the impact starts
nMaxFrame Frame where the impact ends

Cuadro 3.12: dtcImpact structure definition

Most of the functions in this pair of files manipulate these data
structures in one way or another, except the (now unused) impact
detection:

init_list: Initiates an empty list list of a given max size.

create_point: creates a point given the parameters states above.

create_item: creates an item with a given point

delete_head_item: Deletes first item of a list

add_tail_item: Adds a item to the end of the list

delete_list: Deletes a list

detect_impact: Detect an impact [unused]

get_item_array_mean_value: Returns mean value of an array of
items

get_item_list_mean_value: Returns mean value of a list

init_dtc_struct: Initialices dtcImpact structure

print_list_item: Prints a list

print_item_array: Prints an item array

3.5.19. resource.h: MFC resource file

This header file is automatically generated by MFC and it shouldn’t
be edited. It’s used by the .rc resource file. Some of these definitions
are defined in those files and then used in the Detect-MFCDlg files, but
they aren’t to be changed.

3.5.20. serfmt: SER file management

The purpose of this file pair lies in the management of the SER files
supported by the newest astronomical capture recorders. It’s a distinct
file from the ones people are familiarised with and not common for
the general users.

25

internals

Since its structure is so different, and to follow the specification loca-
ted here http://www.grischa-hahn.homepage.t-online.de/astro/ser/SER %20Doc %20V3b.pdf,
two structures have been created, SerHeader and SerCapture.

For SerHeader, these are the fields:

Field Type Purpose
File_ID char[14] FileID
LuID

unsigned int

Lumenera camera series id
ColorID Colour ID: RGB, BGR, MONO, etc.

LittleEndian
Bit order of the pixels, big or little
endian

ImageWidth

size_t

Width of the image
ImageHeight Height of the image
PixelDepth Pixel depth of the image (in bits)
FrameCount Number of frames
Observer

char[40]

Information about the observer
Instrument Information about the instrument
Telescope Information about the telescope
DateTime

unsigned char[8]
Date and time

DateTimeUTC Date and UTC time

Cuadro 3.13: SerHeader structure definition

And for SerCapture:

Field Type Purpose
fh FILE* Associated file pointer
frame

size_t
Frame number

TimeStamp_Frame Frame timestamp
Image IplImage* Bytes per frame
ImageBytes

size_t
Bytes for each image (frame)

BytesPerPixel

Pixel Depth in bits of the
image (which will affect the
BytesPerPixel value

TimeStampExists int Check if there are timestamps
FrameCount

size_t
Total frame count

ValidFrameCount Ser file header
StartTime_JD

size_t

Start time in Julian day format

StartTimeUTC_JD
Start UTC time in Julian day for-
mat

EndTime_JD End time in Julian day format

EndtTimeUTC_JD
End UTC time in Julian day for-
mat

nChannels

int

Number of channels (1 or 3)

mat_type
Type of matrix: 8/16 bit 1/3
channel

Continues in next page

26

3 .5 thorough explanation of the source code

Continues from previous page
Field Type Purpose

byte_depth
Depth in bytes of the image (de-
pends on BytesPerPixel

current_frame Frame read at the time
frame_data void* Raw frame data

big_endian
boolean

Processor endianness, big
(true) or little (false)

data_proc_same_endianness
Frame data and the processor
have the same endianness

Cuadro 3.14: SerCapture structure definition

Operated by the next functions:

serCaptureFromFile: starts capture and obtains header data
from the SER file.

serReinitCaptureRead: Reinits the file capture (the program
should exit it the frame count is too small to find an impact)

serReadTimeStamps: reads the timestamps of the file

serQueryFrame: returns the last read frame as an an IplImage
(deprecated)

serQueryTimeStamp: queries timestamp of the current frame.

serReleaseCapture: releases the data after the SER file has been
fully read.

serImageRead: reads a frame and returns the read bytes (depre-
cated since it uses the SER v2 spec)

serTimeStampRead: reads the current timestamp

serDateTime_JD: transforms the SER date format into Julian day

serPrintStr: prints SER string for a given parameter

serPrintHeader: Prints SER header data:

serFrameRead: reads a frame following SER v3 spec and1 returns
the read bytes.

serQueryFrameData: returns the read frame as a void* pointer
to the raw data

27

internals

3.5.21. wrapper: File capture wrapper

This file serves as a wrapper for the different files that will be
analysed. As stated before, there will be three kinds of files: FITS, SER
and the files that can be read with OpenCV.

For that a DtcCapture struct will be defined, with the next parame-
ters

Field Type Purpose
Type char[14] FileID

framecount
unsigned

int
Frame where the impact starts

u union

Union of the three available capture met-
hods, in order to read the correct file:

Field Type Purpose
capture cvCapture* OpenCV
sercapture SerCapture* SER files
filecapture FileCapture* FITS, etc

Cuadro 3.15: DtcCapture structure definition

To operate with this struct, the next functions have been defined:

dtcCaptureFromFile: Initialises capture method, depending on
the type of the file a different field of the union will be used.

dtcReinitCaptureRead: after reading information for different
purposes, the capture will start from the beginning.

dtcReleaseCapture: release the capture object, again depending
on the type of file to be analysed.

dtcQueryFrame: Queries a frame of the video.

dtcGetCaptureProperty: gets the property of the video, namely
the FPS value.

3.5.22. wrapper2: extension of wrapper

This is a extension of the wrapper files, which using the afore-
mentioned struct extends the functionality with a new function which
operates with the new SER v3 spec functionality. It was intended to
work with the C++ version of CvCapture named VideoCapture, which
is still defined for future usage. It has two functions:

dtcCaptureFromFile2: Same as dtcCaptureFromFile but inten-
ded to work with the VideoCapture class.

dtcQueryFrame2: Same as dtcQueryFrame but it operates diffe-
rently with SER files. The returned raw data must be normalised
to a 8bit unsigned character matrix and then colour corrected (if

28

3 .5 thorough explanation of the source code

applicable) to return the original frame. These operations will
depend on the header data of the SER file.

29

	Índice general
	Índice de cuadros
	Índice de figuras
	Introduction
	Changelog

	Installation
	Requirements
	Initial setup
	Start the project
	First run

	Internals
	Major differences from previous versions
	Interface: MFC
	Main window
	Preferences window
	About window
	Notification window

	The new impact detection algorithm
	Definition
	Results

	New functionalities and how to edit them
	GUI
	Algorithm

	Thorough explanation of the source code
	Table of files and purpose
	auxfunc.h: auxiliary functions
	Common: helper functions
	Datation: datation functions
	datation2: extension of datation
	DeTeCt-MFC: main files
	DeTeCt-MFCDlg: window/dialog functionality
	DetectThread: native detection thread
	Dirent: third party native windows directory functions
	dtc: legacy detection algorithm functions [unused]
	dtcas3: Autostakkert!3 detection functions
	dtcgui: Main detection functions
	filefmt: legacy file management functions [unused]
	filefmt2: file management functions
	fitsfmt: FITS management functions
	img: Opencv Matrix operation functions (C API)
	img2: OpenCV detection functions (C++ API)
	max: impact detection helper structures and founctions
	resource.h: MFC resource file
	serfmt: SER file management
	wrapper: File capture wrapper
	wrapper2: extension of wrapper

